Seite Bauherr **Eheleute Paul und Lieselotte Schmitt**

1.3 Charakteristische Schneelasten (DIN EN 1991-1-3)

(KLED: kurz)

300 m

Schneelastzone Geländehöhe ü.NN

Dachneigung Dachneigung 49.0 Abgleiten gehindert Abgleiten gehindert ja nein

1.3.1 Schneelasten auf Dachflächen

Charakteristische Schneelast auf dem Boden, nach NPD zu 4.1(1) DIN EN 1991-1-3

$$s_{k} = \max \begin{cases} 0.25 + 1.91 * \left[\frac{A + 140}{760} \right]^{2} \\ 0.85 \end{cases}$$

$$s_{k} = \max \begin{cases} 0.25 + 1.91 * \left[\frac{300 + 140}{760} \right]^{2} = 0.89 \\ 0.85 \end{cases}$$

$$= 0.89 \text{ kN/m}^{2}$$

Formbeiwert der Schneelasten, nach Tabelle 5.2 DIN EN 1991-1-3

Dachneigung $lpha$	0° ≤ α ≤ 30°	30° < α < 60°	α ≥ 60°
Formbeiwert μ ₁	0,80	0,80 * (60° - α)/30°	0

$$\mu_{1}\left(\alpha_{1}\right) = \max \begin{cases} 0.29 \\ 0.00 \end{cases} \quad \text{(ungehindertes Abgleiten, nicht maßgebend!)} = 0.29$$

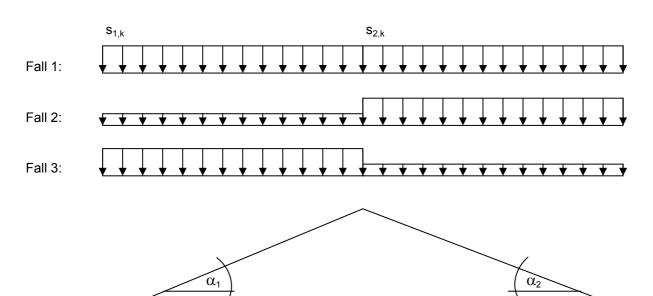
$$\mu_{1}\left(\alpha_{2}\right) = \max \begin{cases} 0.29 \\ 0.00 \end{cases} \quad \text{(ungehindertes Abgleiten, nicht maßgened!)} = 0.29$$

$$\mu_1 (\alpha_2) = \max \left\{ \begin{array}{l} 0.29 \\ 0.00 \end{array} \right. \quad \text{(ungehindertes Abgleiten, nicht maßgened!)}$$

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 2

• Schneelasten und Lastfälle, nach Bild 5.3 DIN EN 1991-1-3

Fall 1:


 $s_{1,k} = \mu_1 (\alpha_1) * s_k = 0.29 * 0.89 = 0.26 \text{ kN/m}^2$ $s_{2,k} = \mu_1 (\alpha_2) * s_k = 0.29 * 0.89 = 0.26 \text{ kN/m}^2$

Fall 2:

 $s_{1,k} = 0.5 * \mu_1 (\alpha_1) * s_k = 0.5 * 0.29 * 0.89$ = 0.13 kN/m² $s_{2,k} = \mu_1 (\alpha_2) * s_k = 0.29 * 0.89$ = 0.26 kN/m²

Fall 3:

 $s_{1,k} = \mu_1 (\alpha_1) * s_k = 0.29 * 0.89 = 0.26 \text{ kN/m}^2$ $s_{2,k} = 0.5 * \mu_1 (\alpha_2) * s_k = 0.5 * 0.29 * 0.89 = 0.13 \text{ kN/m}^2$

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 3

1.4 Charakteristische Windlasten auf Satteldächer (DIN EN 1991-1-4)

(KLED: kurz/sehr kurz)

Windlastzone : 1 (Binnenland)

Dach: Gebäude:

49,0 11,00 m Dachneigung α_1 : max. Firsthöhe (≤ 25 m!) 49,0 10,50 m Dachneigung Gebäudebreite b_G: α_2 : (Giebel) 11,20 m (Giebel) 11,00 m Dachbreite b_D : Gebäudelänge (Traufe)

Dachlänge I_D : 12,00 m (Traufe)

1.4.1 Windlasten auf Dachflächen

Für die Tragsicherheitsnachweise (STR) werden die Windlasten mit den $c_{pe,10}$ -Werten ermittelt. Für die Tragsicherheitsnachweise (EQU), Windsog werden die Windlasten ungünstig mit den $c_{pe,1}$ -Werten ermittelt.

Böhengeschwindigkeitsdruck, konstant über Gebäudehöhe nach Tabelle NA.B.3, DIN EN 1991-1-4/NA

Als Bezugshöhe für den Böhengeschwindigkeitsdruck wird die maximale Firsthöhe über Grund angenommen.

 $q_0 = 0.65 \text{ kN/m}^2 \text{ für: } 10\text{m} < \text{h} < 18\text{m}$

Außendruckbeiwerte für Satteldächer nach Tabelle 7.4.a, DIN EN 1991-1-4

Anströmrichtung θ = 0°/180°, ± 45°

					Bere	ich				
$lpha_{i}$	F	=	(3	ŀ	1	ı		J	l
[°]	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}
45	0,00	0,00	0,00	0,00	0,00	0,00	-0,20	-0,20	-0,30	-0,30
40	0,70	0,70	0,70	0,70	0,60	0,60	0,00	0,00	0,00	0,00
60	0,70	0,70	0,70	0,70	0,70	0,70	-0,20	-0,20	-0,30	-0,30
60	0,70	0,70	0,70	0,70	0,70	0,70	-0,20	-0,20	-0,30	-0,30
Interpolati	on für $ lpha_{1} $	= 49,0	0				 			
~: 40	0,19	0,19	0,19	0,19	0,19	0,19	-0,20	-0,20	-0,30	-0,30
α_1 49	0,70	0,70	0,70	0,70	0,63	0,63	-0,05	-0,05	-0,08	-0,08
'		'	ı		l		•		ļ.	
					Bere	eich	_			
$lpha_{i}$	F	=	(3	Bere H		ļ I	ļ	J	I
α _i [°]	F C _{pe,10}	C _{pe,1}	C _{pe,10}	G _{pe,1}	i i		C _{pe,10}	C _{pe,1}	Մ Ե _{ре,10}	C _{pe,1}
[°]					F	1	C _{pe,10} -0,20	c _{pe,1} -0,20	-	
	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	l C _{pe,1}			C _{pe,10}	C _{pe,1}
[°] 45	c _{pe,10} 0,00	c _{pe,1} 0,00	c _{pe,10} 0,00	c _{pe,1} 0,00	c _{pe,10} 0,00	C _{pe,1}	-0,20	-0,20	c _{pe,10} -0,30	c _{pe,1} -0,30
[°]	c _{pe,10} 0,00 0,70	c _{pe,1} 0,00 0,70	c _{pe,10} 0,00 0,70	c _{pe,1} 0,00 0,70	C _{pe,10} 0,00 0,60	t c _{pe,1} 0,00 0,60	-0,20 0,00	-0,20 0,00	c _{pe,10} -0,30 0,00	c _{pe,1} -0,30 0,00
[°] 45	C _{pe,10} 0,00 0,70 0,70 0,70	0,00 0,70 0,70	c _{pe,10} 0,00 0,70 0,70	c _{pe,1} 0,00 0,70 0,70	C _{pe,10} 0,00 0,60 0,70	C _{pe,1} 0,00 0,60 0,70	-0,20 0,00 -0,20	-0,20 0,00 -0,20	c _{pe,10} -0,30 0,00 -0,30	c _{pe,1} -0,30 0,00 -0,30
45 60 Interpolati	C _{pe,10} 0,00 0,70 0,70 0,70	C _{pe,1} 0,00 0,70 0,70 0,70	c _{pe,10} 0,00 0,70 0,70	c _{pe,1} 0,00 0,70 0,70	C _{pe,10} 0,00 0,60 0,70	C _{pe,1} 0,00 0,60 0,70	-0,20 0,00 -0,20	-0,20 0,00 -0,20	c _{pe,10} -0,30 0,00 -0,30	c _{pe,1} -0,30 0,00 -0,30
[°] 45 60	$c_{\text{pe},10} \ 0,00 \ 0,70 \ 0,70 \ 0,70 \ on für \alpha_2$	$\begin{array}{c} c_{\text{pe.1}} \\ 0,00 \\ 0,70 \\ 0,70 \\ 0,70 \\ = 49,0 \end{array}$	C _{pe,10} 0,00 0,70 0,70 0,70 0,70	0,00 0,70 0,70 0,70 0,70	C _{pe,10} 0,00 0,60 0,70 0,70	C _{pe,1} 0,00 0,60 0,70 0,70	-0,20 0,00 -0,20 -0,20	-0,20 0,00 -0,20 -0,20	c _{pe,10} -0,30 0,00 -0,30 -0,30	-0,30 0,00 -0,30 -0,30

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 4

Anströmrichtung θ = 90°/270°, ± 45°

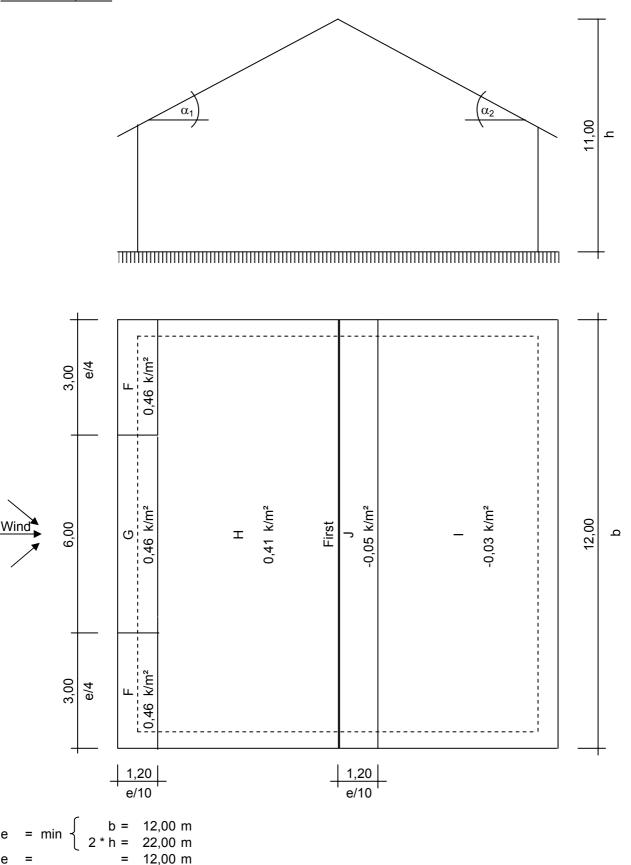
	! ! !		_	Ber	eich			
$lpha_{i}$	F	=	(3	ŀ	1		
[°]	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	$\mathbf{c}_{pe,1}$
45	-1,10	-1,50	-1,40	-2,00	-0,90	-1,20	-0,50	-0,50
60	-1,10	-1,50	-1,20	-2,00	-0,80	-1,00	-0,50	-0,50
Interpolat	ion für $ lpha_{1} $	= 49,0	0					
α ₁ 49	-1,10	-1,50	-1,35	-2,00	-0,87	-1,15	-0,50	-0,50
	: 				Bere	eich		
α_{i}	F	=		3	_	eich H		I
$lpha_{i}$			C _{pe,10}	G _{pe,1}	_	1	C _{pe,10}	l C _{pe,1}
					ŀ	H C _{pe,1}	c _{pe,10}	C _{pe,1}
[°]	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	H C _{pe,1}		
45 60	C _{pe,10} -1,10	-1,50	c _{pe,10} -1,40 -1,20	-2,00	C _{pe,10} -0,90	-1,20	-0,50	-0,50

· Winddruck auf die Dachflächen

 $w_{e,k} = c_{pe} x q_p$

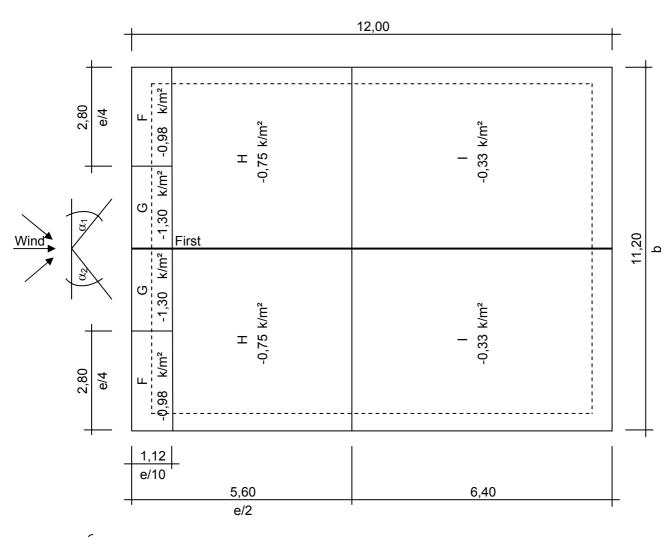
Anströmrichtung θ = 0°/180°, ± 45° ohne Berücksichtigung der Lasteinzugsfläche

					w _{e,k} [kl Bere					
$lpha_{i}$	F		(3	<u> </u>	1				l
[°]	C _{pe,10}	$C_{\text{pe},1}$	C _{pe,10}	$C_{\text{pe},1}$	C _{pe,10}	$c_{pe,1}$	C _{pe,10}	$C_{\text{pe},1}$	C _{pe,10}	$C_{\text{pe},1}$
α ₁ 49,0	0,12	0,12	0,12	0,12	0,12	0,12	-0,13	-0,13	-0,20	-0,20
α_1 49,0	0,46	0,46	0,46	0,46	0,41	0,41	-0,03	-0,03	-0,05	-0,05
α ₂ 49,0	0,12	0,12	0,12	0,12	0,12	0,12	-0,13	-0,13	-0,20	-0,20
α_2 49,0	0,46	0,46	0,46	0,46	0,41	0,41	-0,03	-0,03	-0,05	-0,05


Anströmrichtung θ = 90°/270°, ± 45° ohne Berücksichtigung der Lasteinzugsfläche

					kN/m²] eich			
$lpha_{i}$	F	=	(3	+	1		l
[°]	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}	C _{pe,10}	C _{pe,1}
α ₁ 49,0	-0,72	-0,98	-0,88	-1,30	-0,57	-0,75	-0,33	-0,33
α ₂ 49,0	-0,72	-0,98	-0,88	-1,30	-0,57	-0,75	-0,33	-0,33

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 5


• Einteilung der Dachflächen nach Bild 7.8, DIN EN 1991-1-4

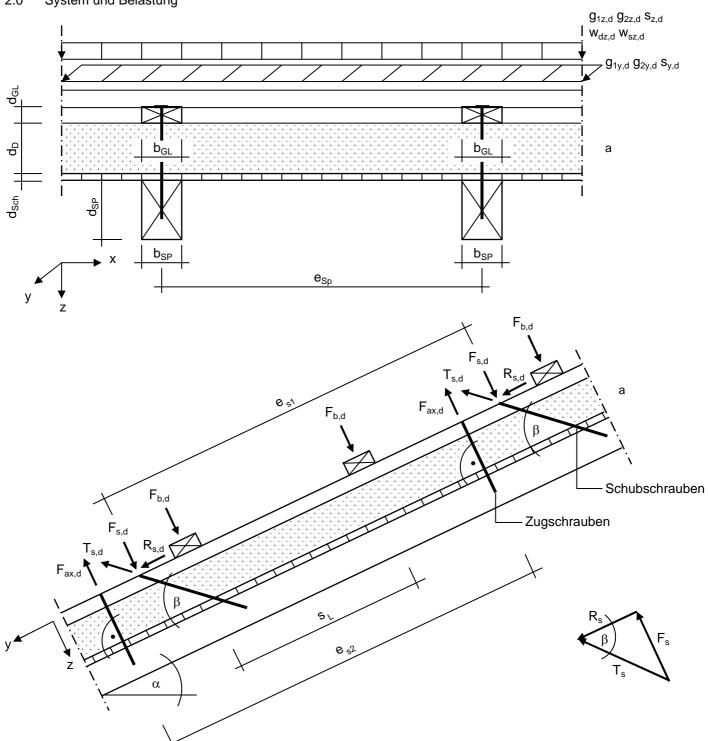
$\theta = 0^{\circ} / 180^{\circ}, \pm 45^{\circ}$

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 6

θ = 90° / 270°, \pm 45°

e = min
$$\begin{cases} b = 11,20 \text{ m} \\ 2*h = 22,00 \text{ m} \\ e = 11,20 \text{ m} \end{cases}$$

Bauvorhaben Einfamilienhaus mit Einliegerwohnung und Garage Dok.# / Rev.: CAL-S-21-07-16 / 0 **Eheleute Paul und Lieselotte Schmitt** 7 Bauherr Seite Pos. 101.1 GK: 0 2 Grundlatten und Verbindungsmittel NKL: Einbauvariante druckfeste Dämmung mit Teilgewindeschrauben 65,0 cm Lattenabstand max. s₁^a: 40,0 cm 49,0 ° Sparrenabstand e_{SP} Dachneigung α : Grundlatten Latte - DIN 4074-1 - S10 K TS (C24) - Fi/Ta $d_{GI} / b_{GI} =$ mm bzw. 40 / 60 mm Dämmung Druckfeste Wärmedämmung nach DIN 4108-10 - DAD - min CS(10)50 Dachbauschrauben Teilgewindeschrauben mit Senkkopf - Würth - ASSY 3.0 (charakterristische Tragfähigkeitswerte siehe Seite 16) 1.0 Lastannahmen 1.1 Charakteristische Eigenlasten (DIN EN 1991-1-1) (KLED: ständig) Eigenlast Dacheindeckung inkl. Traglatten = $g_k * cos \alpha_{max} * e_{Sp}$ 0,23 kN/m $g_{z,k}$ = 0.55 * cos 49.0 * 0.650 $g_{y,k}$ = $g_k * \sin \alpha_{max} * e_{Sp}$ 0,55 * sin 49,0 * 0,650 0,27 kN/m Eigenlast Grundlatten $= g_k * d_{GL} * b_{GL} * \cos \alpha_{max}$ 4,20 0,04 0,06 * cos 49,0 0,01 kN/m $g_{z,k}$ = $g_k * d_{GL} * b_{GL} * \sin \alpha_{max}$ 4,20 0,06 * sin 49.0 0,01 kN/m 0,04 $g_{v,k}$ 0,24 kN/m $g_{1z,k} =$ 0,28 kN/m $g_{1y,k}$ Eigenlast Dämmung = $g_k * t_D * \cos \alpha_{max} * e_{Sp}$ $g_{z,k}$ 1,00 * 0,12 * cos 49,0 * 0,650 0,05 kN/m $g_{2z,k}$ $= g_k * t_D * \sin \alpha_{max} * e_{Sp}$ 0,12 * sin 49,0 * 0,650 1,00 0,06 kN/m $g_{y,k}$ $g_{2v,k} =$ 1.2 Charakteristische Schneelasten (DIN EN 1991-1-3) (KLED: kurz) Schneelast auf die Dachflächen $= s_k * cos^2 \alpha * e_{Sp}$ $= 0.26 \cdot \cos^2 49.0 \cdot 0.650$ $S_{z,k}$ 0,07 kN/m $\boldsymbol{s}_{\boldsymbol{y},k}$ = s_k * $sins \alpha$ * $cos \alpha$ * e_{Sp} = 0,26 * sin 49,0 * cos 49,0 * 0,650 0.08 kN/m 1.3 Charakteristische Windlasten (DIN EN 1991-1-4) (KLED: kurz/sehr kurz) Maximaler Winddruck auf die Dachflächen, Anströmrichtung $\theta = 0^{\circ} / 180^{\circ}$ (STR, $c_{\text{pe.}1}$) = 0,46 * 0,650 $W_{dz,k}$ $= W_{eG,k} * e_{Sp}$ 0,30 kN/m


• Maximaler Windsog auf die Dachflächen, Anströmrichtung $\theta = 90^{\circ} / 270^{\circ}$ (EQU, $c_{pe.1}$)

 $W_{sz,k} = W_{eG,k} * e_{Sp} = -1,30 * 0,650 = -0,85 \text{ kN/m}$

a abhängig von der Dacheindeckung

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 8

2.0 System und Belastung

a Feuchtigkeitssperren sind nicht dargestellt.

(schematische Darstellung)

2.1 Geometrie

e _{SP}	b _{SP}	d_{SP}	S _L	α	d_GL	b_GL	t _D	d_Sch	e _{s1}	e _{s2}	β
[cm]	[cm]	[cm]	[cm]	[°]	[mm]	[mm]	[mm]	[mm]	[m]	[m]	[°]
65,0	8,0	16	40,0	49	40	60	120	22	1,49	1,75	60

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 9

2.2 Lastzusammenstellung, charakteristisch
--

	LF	1		LF	2	LF 3	LF 4
	Eiger	nlast		Sch	nee	Winddruck	Windsog
$g_{1z,k}$	9 _{1y,k} [k N /		$g_{2y,k}$	s _{z,k} [kN	s _{y,k} /m]	$w_{dz,k}$ [kN/m]	$w_{sz,k}$ [kN/m]
0.24	0.28	0.05	0.06	0.07	0 08	0.30	-∩ 85

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 10

3.0 Lastfallkombinationen und Bemessungslasten

3.1 Lastfallkombinationen $\mathsf{E_d} = \Sigma \ \gamma_{\mathsf{g}} \ ^* \ \mathsf{G}_{\mathsf{k},\mathsf{i}} \oplus \gamma_{\mathsf{Q}} \ ^* \ \mathsf{Q}_{\mathsf{k},\mathsf{i}} \oplus \Sigma \ \gamma_{\mathsf{Q}} \ ^* \ \mathsf{\psi}_{\mathsf{0},\mathsf{i}} \ ^* \ \mathsf{Q}_{\mathsf{k},\mathsf{i}}$

				LF 1 genlast	LF 2 Schnee		LF : Windd			4 dsog
			$g_{1z,k},g_{1y,k}$	$g_{2z,k},g_{2y,k}$	s _{z,k} , s	y,k	$\mathbf{W}_{dz,k}$			
		k_{mod}	$\gamma_{G,sup}$ $\gamma_{G,inf}$	$\gamma_{G,sup}$ $\gamma_{G,inf}$	γα	$\Psi_0^{\;a}$	γα	Ψ_0	γα	Ψ_0
LK	KLED	[-]	1,35 1,00	1,35 1,00	1,50	0,50	1,50	0,60	1,50	0,60
1	ständig	0,60	1,35	1,35	-		-			
2	kurz	0,90	1,35	1,35	1,50)	-			-
3	k./s.k	1,00	1,35	1,35	-		1,50)		-
4	k./s.k	1,00	1,35	1,35	1,50)	1,50 *	0,60		-
5	k./s.k	1,00	1,35	1,35	1,50 *	0,50	1,50)		-
6	k./s.k	1,00	1,00	1,00	-		-		1,	50

3.2 Bemessungslasten

		\mathbf{k}_{mod}			LF 1 genlast kN/m]		Sch	= 2 nnee I/m]	LF 3 Winddruck [kN/m]	LF 4 Windsog [kN/m]
LK	KLED	[-]	$g_{1z,d}$	$g_{1y,d}$	g 2z,d	$g_{2y,d}$	$s_{z,d}$	$s_{y,d}$	$\mathbf{W}_{dz,d}$	$W_{sz,d}$
1	ständig	0,60	0,33	0,37	0,07	0,08	-		-	-
2	kurz	0,90	0,33	0,37	0,07	0,08	0,11	0,13	-	-
3	k./s.k	1,00	0,33	0,37	0,07	0,08	-	-	0,45	-
4	k./s.k	1,00	0,33	0,37	0,07	0,08	0,11	0,13	0,27	-
5	k./s.k	1,00	0,33	0,37	0,07	0,08	0,05	0,06	0,45	-
6	k./s.k	1,00	0,24	0,28	0,05	0,06	-	-	-	-1,27

a DIN EN 1990/NA NPD zu A.1.2.2 Tabelle NA.A.1.1, für Orte bis zu NN + 1000m

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 11

4.0 Schraubenkräfte, Dachschub

$$\Sigma R_{s,d} = g_{1y,d} * e_{s1} \oplus g_{2y,d} * e_{s1} \oplus s_{y,d} * e_{s1}$$

$$\Sigma T_{\text{s,d}} = \Sigma F_{\text{ax,d}} = \Sigma R_{\text{s,d}} / \cos \beta$$

4.1 $T_{s,d}$, in Schraubenrichtung, Schubschrauben e_{s1} = 1,49 m β = 60 °

LK	aus LF 1 Eigenlast R _{s,d} [kN]	aus LF 2 Schnee R _{s,d} [kN]	aus LF 3 Winddruck R _{s,d} [kN]	aus LF 4 Windsog R _{s,d} [kN]	Σ $R_{s,d}$ [kN]	Σ T _{s,d} [kN]
1	0,676	-	-	-	0,676	1,353
2	0,676	0,187	-	-	0,863	1,727
3	0,676	-	-	-	0,676	1,353
4	0,676	0,187	-	-	0,863	1,727
5	0,676	0,094	-	-	0,770	1,540

5.0 Schraubenkräfte, Windsog

$$\Sigma \mathsf{F}_{\mathsf{ax},\mathsf{d}} = \mathsf{g}_{\mathsf{1z},\mathsf{d}} * \mathsf{e}_{\mathsf{s}2} \oplus \mathsf{w}_{\mathsf{sz},\mathsf{d}} * \mathsf{e}_{\mathsf{s}2}$$

5.1 $F_{ax,d}$, in Schraubenrichtung, Sogschrauben $e_{s2} = 1,75$ m $\beta = 90$ °

	aus LF 1 Eigenlast	aus LF 2 Schnee	aus LF 3 Winddruck	aus LF 4 Windsog	
	$F_{ax,d}$	$F_{ax,d}$	$F_{ax,d}$	$F_{ax,d}$	Σ F
LK	[kN]	[kN]	[kN]	[kN]	[kl
6	0.422	-	-	-2.218	-1.7

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 12

6.0 Schnittkräfte für die Grundlatten und Dämmung, Dachschub und Winddruck

$$\begin{array}{lll} \Sigma \; F_{b,d} & = & = \; g_{1z,d} \, ^* \, s_L \oplus \, s_{z,d} \, ^* \, s_L \oplus \, w_{dz,d} \, ^* \, s_L \\ \Sigma \; F_{s,d} & = \; \Sigma \; R_{s,d} \, ^* \, tan \, \beta \; = \; g_{1y,d} \, ^* \, e_{s,1} \, ^* \, tan \, \beta \oplus g_{2y,d} \, ^* \, e_{s1} \, ^* \, tan \, \beta \oplus g_{y,d} \, ^* \, e_{s1} \, ^* \, tan \, \beta \\ \Sigma \; V_{z,d} & = \; \frac{(\Sigma \; F_{b,d} + \Sigma \; F_{s,d})}{2} \\ \Sigma \; M_{y,d} & = \; \frac{(\Sigma \; F_{b,d} + \Sigma \; F_{s,d}) \, ^* \, I_{char}}{4} & \text{(für } I_{char} \; siehe \; Seite \; 15 \;) \end{array}$$

6.1 $F_{b,d}$ Punktlasten im Bereich der Traglatten, rechtwinklig zur Grundlatte. $s_L = 0,40 \text{ m}$

LK	aus LF 1 Eigenlast F _{b,d} [kN]	aus LF 2 Schnee F _{b,d} [kN]	aus LF 3 Winddruck F _{b,d} [kN]	aus LF 4 Windsog F _{b,d} [kN]	Σ F _{b,d} [kN]
1	0,130	-	-	-	0,130
2	0,130	0,044	-	-	0,174
3	0,130	-	0,179	-	0,310
4	0,130	0,044	0,108	-	0,282
5	0,130	0,022	0,179	-	0,331

6.2 $F_{s,d}$ im Bereich des Schraubenkopfes, rechtwinklig zur Grundlatte. $e_{s1} = 1,49$ m $\beta = 60$ °

LK	aus LF 1 Eigenlast R _{s,d} [kN]	aus LF 2 Schnee R _{s,d} [kN]	aus LF 3 Winddruck R _{s,d} [kN]	aus LF 4 Windsog R _{s,d} [kN]	$\Sigma \ R_{s,d}$ [kN]	$\Sigma F_{s,d}$ [kN]
1	0,676	-	-	-	0,676	1,172
2	0,676	0,187	-	-	0,863	1,496
3	0,676	-	-	-	0,676	1,172
4	0,676	0,187	-	-	0,863	1,496
5	0,676	0,094	-	-	0,770	1,334

6.3 Querkräfte für die Grundlatten

LK	Σ F _{b,d} [kN]	Σ $F_{s,d}$ [kN]	ΣV _{z,d}
LN	[KIN]	[KIN]	[kN]
1	0,130	1,172	0,651
2	0,174	1,496	0,835
3	0,310	1,172	0,741
4	0,282	1,496	0,889
5	0,331	1,334	0,833

6.4 Biegemomente für die Grundlatten $I_{char} = 0,41 \text{ m}$

	$\Sigma \; F_{b,d}$	$\Sigma \; F_{s,d}$	$\Sigma M_{y,d}$
LK	[kN]	[kN]	[kNm]
1	0,130	1,172	0,133
2	0,174	1,496	0,171
3	0,310	1,172	0,152
4	0,282	1,496	0,182
5	0,331	1,334	0,171

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 13

7.0 Schnittkräfte für die Grundlatten, Windsog

Die Schnittkräfte werden vereinfacht und konservativ für einen Einfeldträger berechnet.

$$\Sigma V_{z,d} = g_{z,d} * e_{s2} / 2 \oplus w_{sz,d} * e_{s2} / 2$$

$$\Sigma M_{y,d} = g_{z,d} * e_{s2}^2 / 8 \oplus w_{sz,d} * e_{s2} / 8$$

7.1	Querkräfte fü	r die Grundla	itten e _{s2}	= 1,75 m	
	aus LF 1	aus LF 2	aus LF 3	aus LF 4	
	Eigenlast	Schnee	Winddruck	Windsog	
	$V_{zGL,d}$	$V_{zGL,d}$	$V_{zGL,d}$	$V_{zGL,d}$	$\Sigma V_{z,d}$
LK	[kN]	[kN]	[kN]	[kN]	[kN]

6 0,211 - - -1,109 -0,898

	7.2	Biegemomente für die Grundlatten	$e_{s2} =$	1,75 m
--	-----	----------------------------------	------------	--------

	aus LF 1	aus LF 2	aus LF 3	aus LF 4	
	Eigenlast	Schnee	Winddruck	Windsog	
	$M_{yGL,d}$	$M_{yGL,d}$	$M_{yGL,d}$	$M_{yGL,d}$	$\Sigma \; M_{y,d}$
LK	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6	0,092	-	-	-0,485	-0,393

0 0,092 - - - -0,485 -0,395

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 14

7.0 Tragfähigkeitsnachweis der Grundlatten

$$\frac{\sigma_{m,y,d}}{f_{m,y,d}} = \frac{\sum M_{y,d} / W_{y,net}}{k_{mod} * f_{m,k} * k_{h,y} / \gamma_m} \le 1$$

$$\frac{\tau_{z,d}}{f_{v,d}} = \frac{1.5 * \sum V_{z,d} / A_{net}}{k_{mod} * f_{v,k} * k_{cr} / \gamma_m} \le 1$$

Mit:

$$A_{net} = (b_{GL} - d) * d_{GL}$$

$$W_{y,net} = \frac{(b_{GL} - d) * d_{GL}^2}{6}$$

$$k_{cr} = 2,00 / f_{v,k}$$

$$k_{h,y} = min \begin{cases} (150 / d_{GL})^{0.2} \\ 1,30 \end{cases}$$

7.1 Charakteristische Querschnittswerte, Grundlatten

d _{GL} [mm]	b _{GL} [mm]	A _{net} [mm²]	W _{y, net} [cm³]	$ m I_{yGL}$ [cm 4]	E _{GL} [kN/cm²]	f _{m,k} [N/mm²]	f _{v,k} [N/mm²]	ρ _k [kg/m³]	k _{cr} [-]	k _{h,y} [-]	γ _m [-]	
40	60	2080	13,87	32,00	1100	24,00	4,00	350,00	0,50	1,30	1,30	

7.2 Schubspannungsnachweis (DIN EN 1995-1-1/NA, 6.1.7)

LK	KLED	k _{mod} [-]	τ _{z,d} [N/mm²]	f _{v,d} [N/mm²]	$\frac{\tau_{z,d}}{f_{v,d}}$ [-]	≤	1
1	ständig	0,60	0,469	0,923	0,509	<	1
2	kurz	0,90	0,602	1,385	0,435	<	1
3	k./s.k.	1,00	0,534	1,538	0,347	<	1
4	k./s.k.	1,00	0,641	1,538	0,416	<	1
5	k./s.k.	1,00	0,600	1,538	0,390	<	1
6	k./s.k.	1,00	0,648	1,538	0,421	<	1

7.3 Biegespannungsnachweis (DIN EN 1995-1-1, 6.1.6)

LK	KLED	k _{mod} [-]	თ _{m,y,d} [N/mm²]	f _{m,y,d} [N/mm²]	<u> σ_{m,y,d} </u> f _{m,y,d} [-]	≤	1	
1	ständig	0,60	9,615	14,400	0,668	<	1	
2	kurz	0,90	12,329	21,600	0,571	<	1	
3	k./s.k.	1,00	10,940	24,000	0,456	<	1	
4	k./s.k.	1,00	13,124	24,000	0,547	<	1	
5	k./s.k.	1,00	12,297	24,000	0,512	<	1	
6	k./s.k.	1,00	-28,334	24,000	1,181	>	1	

Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 15

8.0 Tragfähigkeitsnachweis der Wärmedämmung

$$\frac{\sigma_{D,d}}{\sigma_{R,d}} = \frac{(1.5 * \Sigma F_{b,d} + \Sigma F_{s,d}) / (2 * I_{char} * w)}{1.10 * \sigma_{10\%}} \le 1$$

Mit:

$$I_{char} = \frac{4}{\sqrt{\frac{4 * E_{GL} * I_{GL}}{w_{ef} * K}}} \le e_{Sp}!$$

$$w_{ef} = w + t_D / 2$$

$$w = min \begin{cases} b_{GL} \\ b_{SP} & \text{(Schalung, nicht maßgebend)} \end{cases}$$

$$K = \frac{E_D}{t_D}$$

$$E_D = \sigma_{10\%} / \varepsilon$$

8.1 Charakteristische Querschnittswerte, Ausparrendämmung

t_{D}	$\sigma_{\text{10}\%}$	E_D	\mathbf{w}_{ef}	W	K	I_{char}	
[mm]	[kPa]	[kN/cm ²]	[cm]	[cm]	[kN/cm³]	[cm]	
120	50	0,05	12,0	6.0	0,0042	40,96	

8.2 Druckspannungsnachweis

_	LK	σ _{D,d} [N/mm²]	σ _{R,d} [N/mm²]	$rac{\sigma_{D,d}}{\sigma_{R,d}}$	≤	1	
	1	0,028	0,055	0,506	<	1	OK!
	2	0,036	0,055	0,650	<	1	OK!
	3	0,033	0,055	0,605	<	1	OK!
	4	0,039	0,055	0,709	<	1	OK!
	5	0,037	0,055	0,677	<	1	OK!

Eheleute Paul und Lieselotte Schmitt 16 Bauherr Seite

9.0 Tragfähigkeitsnachweis der Verbindungsmittel, Würth Teilgewindeschrauben mit Senkkopf

$$\frac{\sum F_{ax,d}}{R_{ax,d}} = \frac{\sum F_{ax,d}}{k_{mod} * F_{ax,Rk} / \gamma_m}$$

9.1 Charkteristische Querschnittswerte, Schubschrauben ASSY 3.0 (ETA 11/0190, 27.06.2013)

d	I	d _h	l _{ef}	β	e _{s1}	$f_{ax,k}$	f _{head,k}	f _{tens,k}	γm	γм2	
[mm]	[mm]	[mm]	[mm]	[°]	[m]	[N/mm²]	[N/mm²]	[kN]	[-]	[-]	
8,0	320	15,00	100	60	1,49	11,00	13,00	20,00	1,30	1,25	

9.2 Charkteristische Querschnittswerte, Zugschrauben ASSY 3.0 (ETA 11/0190, 27.06.2013)

d	l	d _h	l _{ef}	β	e _{s2}	$f_{ax,k}$	f _{head,k}	$f_{tens,k}$	γ_{m}	γм2	
[mm]	[mm]	[mm]	[mm]	[°]	[m]	[N/mm²]	[N/mm²]	[kN]	[-]	[-]	
8,0	280	15,00	98	90	1,75	11,00	13,00	20,00	1,30	1,25	

9.3 Charakteristische Tragfähigkeit in Richtung der Schraubenachse

$$\left(\frac{k_{\text{mod}}}{\gamma_{\text{m}}} * \frac{f_{\text{ax,k}} * d * l_{\text{ef}} * k_{1} * k_{2}}{1,2 * \cos^{2} \beta + \sin^{2} \beta} * \left(\frac{\rho_{k1}}{350}\right)^{0.8} \right)$$
 (a)

$$R_{ax,d} = \min \begin{cases} \frac{k_{mod}}{\gamma_m} * \frac{f_{ax,k} * d * l_{ef} * k_1 * k_2}{1,2 * \cos^2 \beta + \sin^2 \beta} * \left(\frac{\rho_{k1}}{350}\right)^{0,8} & \text{(a)} \\ \frac{k_{mod}}{\gamma_m} * f_{head,k} * d_h^2 * \left(\frac{\rho_{k2}}{350}\right)^{0,8} & \text{(b)} \\ \frac{1}{\gamma_{M2}} * f_{tens,k} & \text{(c)} \end{cases}$$

Mit:

$$k_1 = \min \begin{cases} 1 \\ 220 / t_d \end{cases}$$
 (nur für Schubshrauben anzuwenden)

$$k_2 = \min \left\{ \frac{1}{\sigma_{10\%}} / 0.12 \right\}$$
 (nur für Schubshrauben anzuwenden)

$$\rho_{k1}$$
 = 350 kg/m³ (Sparren)
 ρ_{k2} = 350 kg/m³ (Grundlatte)

9.4 Nachweis auf Herausziehen, Schubschrauben

LK	KLED	k _{mod}	a F _{ax,d} [kN]	b F _{ax,d} [kN]	c F _{ax,d} [kN]	R _{ax,d} [kN]	$\frac{\sum F_{ax,d}}{R_{ax,d}}$ [-]	≤	1	
1	ständig	0,60	1,61	1,35	16,00	1,35	1,002	>	1	FAIL!
2	kurz	0,90	2,42	2,03	16,00	2,03	0,853	<	1	OK!
3	k./s.k	1,00	2,69	2,25	16,00	2,25	0,601	<	1	OK!
4	k./s.k	1,00	2,69	2,25	16,00	2,25	0,768	<	1	OK!
5	k./s.k	1,00	2,69	2,25	16,00	2,25	0,684	<	1	OK!

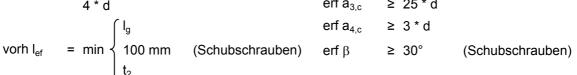
Bauherr : Eheleute Paul und Lieselotte Schmitt Seite : 17

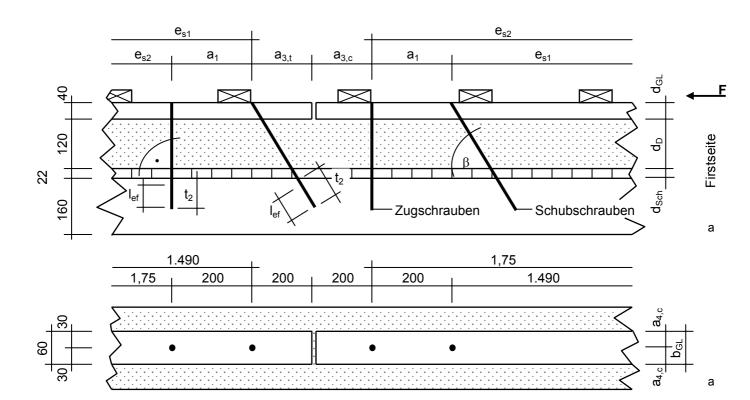
9.5 Nachweis auf Herausziehen, Zugschrauben

LK	KLED	k _{mod}	a F _{ax,d} [kN]	b F _{ax,d} [kN]	c F _{ax,d} [kN]	R _{ax,d} [kN]	$\frac{ \Sigma F_{ax,d} }{R_{ax,d}} \le 1$ [-]
6	k./s.k	1,00	6,63	2,25	16,00	2,25	0,798 < 1 OK !

Eheleute Paul und Lieselotte Schmitt Bauherr Seite 18

Zulässige Abstände und Abmessungen der Verbindungsmittel


10.1 Geometrie, Schubschrauben ASSY 3.0 (ETA 11/0190, 27.06.2013)


	d _{GL}	b _{GL}	d	l	t ₂	l _g	l _{ef}	β	a _{3,t}	a₁	a _{4,c}	e _{s1}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[mm]	[mm]	[mm]	[m]
erf.	30	50	6,0	-	-	-	40	30	200	200	24	1,75
vorh.	40	60	8,0	320	109,8	100	100	60	200	200	30	1,49

10.2 Geometrie, Zugschrauben ASSY 3.0 (ETA 11/0190, 27.06.2013)

	d _{GL}	b _{GL}	d	l	t ₂	l _g	l _{ef}	β	a _{3,c}	a₁	a _{4,c}	e _{s2}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[mm]	[mm]	[mm]	[m]
erf.	30	50	6,0	-	-	-	40	90	200	200	24	1,75
vorh.	40	60	8,0	280	98	100	98	90	200	200	30	1,75

a Feuchtigkeitssperren sind nicht dargestellt.

(schematische Darstellung)